Jul 28

How to target profitable innovation areas with TRIZ

One of the most basic and frequently observed TRIZ laws is the law of non-uniform evolution of technical system components. This law states that within any technological system, the various system components evolve along their own S-curves at non-uniform rates. This non-uniform evolution causes the development of System Conflicts. Put another way, this law predicts that systems will have areas of perfomance which are not good enough. If you follow the Clayton Cristensen line of reasoning, as outlined in the Innovator’s Solution, the companies who work on these areas and consistently advance these areas will be able to make bigger profits. So, the law of non-uniform evolution can really help you target the most profitable product areas for your business in future. Here are a couple of examples of technological systems where this law is being or has been played out. First an historical one, the evolution of the bicycle:

 

In this picture from the┬á1890s┬áyou can see three different formats of bicycle being used at the same time. On the left is a safety bicycle with chain drive, but solid tyres, in the centre is a lever drive bike, allowing the rider to sit further back and lower. On the right is an “Ordinary” bicycle with pedals directly driving the front wheel. Although this bicycle is the most primitive format, it has the most modern tyres – pneumatic. To get to the final format of bicycle which we recognise today, many system conflicts were overcome. A key system conflict in the “Ordinary” format was the need for increased speed against rider safety, which resulted in a very large front wheel with severe risk of injury in the event of a fall.

 

Now lets look at a current example which is getting a lot of press right now because of the rising cost of fuel and fears about global warming. The electic/hybrid vehicle: A key system conflict being played out right now in this area relates to the performance of the battery system. Right now the latest battery technology is too expensive and the infrastructure is not in place to support long journeys.┬áAs a result,┬ámany manufacturers are targeting plug-in hybrid vehicles, which require more complexity and still generate emissions and use up fuel. I’ve just read in the Sunday Times that GM is planning to bring the development of battery technology in-house which backs up the Cristensen model. Clearly, whoever manages to take battery technology forward sufficiently to break through the current system conflict will be able to generate very healthy margins.

´┐Ż

No comments

No Comments

Leave a comment